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limit a~ ~ O, Bi~q ~ - 1 satisfies the linearized equations v, ith 
0~. = ,4 ~( l - z) with ,4 L being any arbitrary constant.  

In conclusion, we have examined the onset of  natural 
con~vection induced by an exothermic surface reaction with 
the hope of  capturing the phenomena of  generation of  spatial 
thermal structures along the solid fluid interface. In so doing. 
we have revealed an interesting connection between the bi- 
furcation behavior of  a stirred tank reactor with an exo- 
thermic reaction and the bifurcation behavior o f  the classical 
Benard problem. 
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INTRODUCTION 

THE RADIAL capillary gap cell (RCGC) was originally 
developed by Beck and Guthke [I1. The R C GC  consists 
of  two or more circular parallel plates with the electrolyte 
entering the cell through a central inlet and flowing outward 
m the radial direction as shown in Fig. 1. This cell finds 
application in electro-organic syntheses where the electrolyte 
has low conductivity and the electrodes must  be placed close 
together to minimize ohmic resistance losses. The typical gap 
width for these cells range from 0.1 to 1 mm. The RCGCs 
are also used as coutometric cells for adsorption studies and 
coulometric metal detectors [2]. 

Dworak and Wendt [3] solved the convective diffusion 
equation for the mass transfer to the electrodes in an RCGC. 
A parabolic velocity profile was assumed which was true 
for creeping flow. Several other assumptions were made for 
convenient mathematical  treatment which limited the utility 
of  the work to the symmetric Graetz problem and for thin, 
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FIG. I. Schematic of  a radial capillary gap cell. 

non-interacting boundary layers. The local mass transfer 
coefficient was calculated using a Leveque type approxi- 
mation. Burgi et al. [2] analyzed the mass transfer for an 
RCGC electrochemical detector. Nondimensionalization 
was used to transform the convective diffusion equation for 
the RCGC into that of  the Graetz problem in rectangular 
ducts. Eigenvalues and eigenfunctions obtained by Brown 
[4] were then used to solve the problem of mass transfer 
in the electrochemical detector, with symmetric boundary 
conditions at the electrodes. 

The objective of  this work was to analyze the mass transfer 
in an RCGC with creeping flow for the asymmetric Graetz 
problem. Nondimensionalization was used to extend the 
solutions for the asymmetric Graetz problem in rectangular 
ducts developed by Edwards and Newman [5] to the RCGC. 
The variation of  the local Sherwood number,  as a function 
of Reynolds and Schmidt number, for various cases has been 
presented. The analysis was also extended to laminar flo~ 
with a non-parabolic velocity profile. 

MODEL STATEMENT 

The convective diffusion model for an RCGC has been 
discussed in detail by Dworak and Wendt [3] and Burgi et 
al. [2]. The convective diffusion equation for the RCGC, 
where radial diffusion is neglected, is given by 

g-C g':C 
v r = -  = D r =  (1) cr C-- - 

where for creeping flow 

"" = 8 ~ ; ;  - 

The model equation is nondimensionalized to the fol- 
lowing form : 

( 1 - ~ : ) ~ 0  ?:0._, (2) 
C¢_ C ~  - 
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NOMENCLATURE 

A coefficient in eigenfunction expansion of 
concentration 

b haft cell width [cm] 
C concentration of species i [mol cm- 3] 
D diffusion coefficient of species i 

[cm-" s - ' l  
h cell width [cm] 
r radial coordinate [cm] 
Re Reynolds number, Q/hv 
Sc Schmidt number, v/D 
Sh local Sherwood number 
Pe Peclet number, Re Sc = Q/hD 
Q flow rate [cm 3 s-  i] 
v velocity [cm s- ~]. 

Greek symbols 
6 boundary layer thickness [cm] 

dimensionless coordinate in radial direction 
® dimensionless concentration 
2 eigenvalue 
v kinematic viscosity [cm'- s-~] 

dimensionless coordinate in transverse direction. 

Subscripts 
b concentration in the bulk 
k summation index in eigenfunction expansion 
o concentration at the surface 
r radial component of velocity 
z transverse component of velocity. 

by using the dimensionless quantities 

C -  Cb : ~ v 
® = C o - C b ;  ~=t~; Re=_~ . ;  S e = - ~  

4nO , 8r~ (r'--r~) 
( : 3 ~  ( r -  - -  r:) = - -  - 3Re Sc h " 

The inlet boundary condition is 

O = 0  at ( = 0 ,  - 1 < ~ < l .  (3) 

The other boundary conditions are dependent on the par- 
ticular application of the RCGC. In this work, the asym- 
metric Graetz problem is considered and thus the boundary 
conditions at the circular plates are 

® = 0  at ¢ = 1  and G = I  at ¢ = - 1  for ~>~0. 

(4a, b) 

RESULTS AND DISCUSSION 

Boundary layer thickness 
Since electrolytic solutions have large Schmidt numbers, 

a Lighthill transformation [6-8] was used to determine the 
boundary layer thickness. The boundary layer thickness near 
the leading edge of the electrode with a step change in con- 
centration was calculated to be 

/6zD 2 2 "~1.'3 - r , ) )  . ,5) 

The concentration profile in the mass transfer boundary 
layer (in terms of the similarity variable, r/) would be 

0 = ~  e x p ( - x 3 ) d x  where q = ( 1 - O k - ~ , , t .  

( 6 )  

The profile has been tabulated by Abramowitz and Stegun 
[9]. Equations (5) and (6) provide a more accurate descrip- 
tion of the boundary layer thickness and the concentration 
profile than the equations presented by Dworak and Wen& 
[3]. Equation (5) presents the boundary layer thickness as an 
explicit function of the flow rate, diffusivity and the cell 
dimensions as opposed to the one obtained by Dworak and 
Wendt [3]. 

Sherwood number correlations 
The local Sherwood number for the asymmetric Graetz 

problem differs at the two walls. There is one set of cor- 
relations for the Sherwood number at the wall with a step 
change in concentration (¢ = - 1 and O steps in value from 
0 to 1 in this case) and another set of correlations for the 

Sherwood number at the wall without a step change in con- 
centration (4 = I and O remains equal to 0). The correlations 
for the Sherwood number at the wall with a step change in 
concentration are also applicable to the symmetric Graetz 
problem. 

Sherwood number at wall with a step change 
In the entrance region when the diffusion layers are 

sufficiently thin and do not interact, a Leveque series solution 
[I0] for the local Sherwood number can be generated. 
Edwards and Newman [5] generated the Leveque series to 
solve the convective diffusion equation for the flow in a 
rectangular channel. Since the non-dimensionalized form of 
the convective-diffusion equation for the RCGC, equation 
(2), is the same as that of flow in the rectangular channel, 
the solution of Edwards and Newman can be used for the 
RCGC. The local Sherwood number in terms of the 
Reynolds and Schmidt numbers and the dimensions of the 
RCGC is 

Sh = c30 - I = 0.66795 \ ~ ]  Re t3 Sc t'3-0.2 

/ h" k -'3 
-0.1233485 t ~  ) Re-V'Sc-L"+O[(ReSe)-"31 . 

( 7 )  

Equation (7) is valid in the entrance region for ( ~< 0.11. 
The local Sherwood number predicted by Dworak and 
Wendt [3] was approximately equal to the first term of the 
series. The above correlation, obtained using a Leveque 
series, is more accurate than the one by Dworak and Wendt 
[3] and it also provides an estimate of the truncation error. 

In the downstream region, ff > 0.11, the Graetz approach, 
of solving the convective diffusion equation by separation 
of variables, should be used. A three-term Graetz series is 
sufficient to describe the Sherwood number 

Sh = 1+2 ~ [Ak[e -'~:. (8) 
k = l  

The eigenvalues and coefficients necessary for the use of 
the above equation have been computed by Edwards and 
Newman [51. 

Sherwood number at wall without a step change 
The Leveque approach cannot be used at the wall without 

the step change in concentration. To predict the local Sher- 
wood number at the wall without the step change in con- 
centration, the Graetz approach of solving the convective 
diffusion equation by separation of variables should be used. 
In the entrance region, ~ ~< 0.18, instead of using a large 
number of terms from the Graetz series, an empirical c o r -  
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relation developed by Edwards and Newman [5] can be used 

(" 1 _0 .4512e-0 : :~ :  ) Sh = --27~? = exp 0.9594-0.6069~ 

(9) 

In the downstream region, ,~ > 0.18, a three-term Graetz 
series solution is sufficient 

1 

Sh = 1 - 2  ~ Ake ;;;. (10) 
k = l  

The eigenvalues and coclticients have been computed by 
Edwards and Newman [5] 

Laminar.flow in RCGC 
The parabolic velocity profile is valid only for creeping 

flo~. Savage [1 l] used perturbation to obtain a series expan- 
sion for a laminar flow velocity profile. The first term in the 
series expansion for the radial component  of  the velocity 
profile is the same as the creeping flow solution. The sub- 
sequent terms in the series expansion come from the inertial 
term in the equation of  motion. The laminar velocity profile, 
consists of  a non-zero transverse component  whereas the 
transverse component  in the creeping flow velocity profile is 
equal to zero. When Savage's velocity profile is used in the 
con~ ective diffusion equation, the solution of the differenlial 
equation by separation of variables, as in the case of Graetz 
problems, is not possible, A numerical solution of the con- 
vective diffusion equation is necessary. 

Since the boundary layer thickness, calculated using the 
LighthilI transformation, used only the first-order term in 
the Taylor series expansion of the velocity profile, equation 
(5) is ~alid even for laminar flow (non-parabolic velocity 
profile}. The Leveque approach, which linearizes the velocity 
profile in the diffusional boundary layer can be used in the 
entrance region to determine the Sherwood number  at the 
wall ~ith a step change in concentration. Thus, in the 
entrance region, the Sherwood number at the wall with a 
step change in concentration is equal to the first term in the 
series presented in equation (7). The other Sherwood number  
correlations presented here in equations (8) (10), which were 
obtained by using the Oraetz approach of  separation of 
variables, would show some deviation from the actual Sher- 
wood number because the Graetz approach is not strictly 
valid for the non-parabolic velocity profile in the laminar 
t'[o~ region. 

The convective diffusion equation with Savage's velocity 
profile was solved numerically using finite differences. Exper- 
imental and theoreticaI investigations involving mass trans- 
port as well as the electrochemical aspects of  the RCGC are 
underway in the authors" laboratory and the results of  these 
investigations will be reported in subsequent papers. 

S U M M A R Y  

The mass transfer in an RCGC with creeping flo~ was 
analyzed for the asymmetric Graetz problem. Non- 
dimensionalization was used to extend the solutions for the 
asymmetric Gractz problem in rectangular ducts to the radial 
capillary gap cell. The variation of  the local Sherwood 
number,  as a function of Reynolds and Schmidt number,  for 
various cases has been presented. 
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